IP3-dependent, post-tetanic calcium transients induced by electrostimulation of adult skeletal muscle fibers
نویسندگان
چکیده
Tetanic electrical stimulation induces two separate calcium signals in rat skeletal myotubes, a fast one, dependent on Cav 1.1 or dihydropyridine receptors (DHPRs) and ryanodine receptors and related to contraction, and a slow signal, dependent on DHPR and inositol trisphosphate receptors (IP(3)Rs) and related to transcriptional events. We searched for slow calcium signals in adult muscle fibers using isolated adult flexor digitorum brevis fibers from 5-7-wk-old mice, loaded with fluo-3. When stimulated with trains of 0.3-ms pulses at various frequencies, cells responded with a fast calcium signal associated with muscle contraction, followed by a slower signal similar to one previously described in cultured myotubes. Nifedipine inhibited the slow signal more effectively than the fast one, suggesting a role for DHPR in its onset. The IP(3)R inhibitors Xestospongin B or C (5 µM) also inhibited it. The amplitude of post-tetanic calcium transients depends on both tetanus frequency and duration, having a maximum at 10-20 Hz. At this stimulation frequency, an increase of the slow isoform of troponin I mRNA was detected, while the fast isoform of this gene was inhibited. All three IP(3)R isoforms were present in adult muscle. IP(3)R-1 was differentially expressed in different types of muscle fibers, being higher in a subset of fast-type fibers. Interestingly, isolated fibers from the slow soleus muscle did not reveal the slow calcium signal induced by electrical stimulus. These results support the idea that IP(3)R-dependent slow calcium signals may be characteristic of distinct types of muscle fibers and may participate in the activation of specific transcriptional programs of slow and fast phenotype.
منابع مشابه
ATP released by electrical stimuli elicits calcium transients and gene expression in skeletal muscle.
ATP released from cells is known to activate plasma membrane P2X (ionotropic) or P2Y (metabotropic) receptors. In skeletal muscle cells, depolarizing stimuli induce both a fast calcium signal associated with contraction and a slow signal that regulates gene expression. Here we show that nucleotides released to the extracellular medium by electrical stimulation are partly involved in the fast co...
متن کاملRole of the JP45-Calsequestrin Complex on Calcium Entry in Slow Twitch Skeletal Muscles*
We exploited a variety of mouse models to assess the roles of JP45-CASQ1 (CASQ, calsequestrin) and JP45-CASQ2 on calcium entry in slow twitch muscles. In flexor digitorum brevis (FDB) fibers isolated from JP45-CASQ1-CASQ2 triple KO mice, calcium transients induced by tetanic stimulation rely on calcium entry via La(3+)- and nifedipine-sensitive calcium channels. The comparison of excitation-cou...
متن کاملNo evidence for inositol 1,4,5-trisphosphate–dependent Ca2+ release in isolated fibers of adult mouse skeletal muscle
The presence and role of functional inositol 1,4,5-trisphosphate (IP(3)) receptors (IP(3)Rs) in adult skeletal muscle are controversial. The current consensus is that, in adult striated muscle, the relative amount of IP(3)Rs is too low and the kinetics of Ca(2+) release from IP(3)R is too slow compared with ryanodine receptors to contribute to the Ca(2+) transient during excitation-contraction ...
متن کاملChanges in contractile properties of skeletal muscle during developmentally programmed atrophy and death.
Skeletal muscle atrophy and death are protracted processes that accompany aging and pathological insults in mammals. The intersegmental muscles (ISMs) from the tobacco hawkmoth Manduca sexta are composed of giant fibers that undergo distinct hormonally-regulated programs of atrophy and death at the end of metamorphosis. Atrophy occurs during the 3 days preceding adult emergence and results in a...
متن کاملGene expression changes of single skeletal muscle fibers in response to modulation of the mitochondrial calcium uniporter (MCU)
The mitochondrial calcium uniporter (MCU) gene codifies for the inner mitochondrial membrane (IMM) channel responsible for mitochondrial Ca(2 +) uptake. Cytosolic Ca(2 +) transients are involved in sarcomere contraction through cycles of release and storage in the sarcoplasmic reticulum. In addition cytosolic Ca(2 +) regulates various signaling cascades that eventually lead to gene expression r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 136 شماره
صفحات -
تاریخ انتشار 2010